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Probability - Sample space

▶ In probability, the key idea is that of a random experiment.

▶ Here, sample space Ω collects all possible outcomes in an
experiment.

▶ Example: In experiment of rolling a dice, Ω = {1, 2, 3, 4, 5, 6}

▶ In experiment of flipping coins infinitely many times ΩB

consists of all ω = (ω1, ω2, . . .) where each ωi ∈ {H,T}.



Assigning probability to subsets

▶ We need an idea of collection of subsets F of Ω where to each
subset probability P can be assigned.

▶ Surprisingly, not possible to assign probabilities to each and
every subset of Ω unless you limit yourself to countably many
outcomes.

▶ A collection of subsets on Ω is an algebra if
i) Ω ∈ F
ii) If A ∈ F ,⇒ Ac ∈ F (∀A ∈ F)

iii) Let A1,A2, . . . ,An ∈ F , then
⋃n

i=1 Ai ∈ F .



Assigning probability to algebras is usually easy

▶ Consider again coin toss space ΩB . For each νi either H or T ,
consider subsets of form

An(ν1, ν2, . . . , νn) = {ω ∈ ΩB : (ω1, ω2, . . . , ωn) = (ν1, ν2, . . . , νn)}

▶ There are 2n such subsets or atoms, and 22n possible subsets
formed by their power set (sets formed by all possible
combination of these atoms, including the empty set). Call
that collection Fn. Check that Fn is an algebra.

▶ And so is F = ∪∞
n=1Fn!

▶ Easy to assign probability to F by assigning probability to each
set An. E.g., for p ∈ (0, 1)

P(An) = p#νi=H(1 − p)#νi=T .



Algebra on [0, 1)

▶ Similarly, for Ω = [0, 1) it is easy to assign probabilities to sets
of the form

A = [a1, b1) ∪ [a2, b2) . . . [an, bn)

where 0 ≤ a1 < b1 ≤ a2 . . . < bn ≤ 1.

▶ Collect all such sets for each n and call that F .

▶ F is an algebra. Check!

▶ Easy to assign measure to this algebra. Example, Lebesgue
measure measures length µ(A) =

∑n
i=1(bi − ai ).

▶ But such algebras contain very few subsets to be interesting



We need σ-algebras!

▶ A σ-algebra F defined on Ω has to satisfy the following
conditions:

i) Ω ∈ F

ii) If A ∈ F ,⇒ Ac ∈ F (∀A ∈ F)

iii) Let A1,A2, . . . ,An, · · · ∈ F ∀i ̸= j , then
⋃

i Ai ∈ F .

Thus by construction, a σ-algebra on sample space Ω will contain
Ω itself, complements of every set that belongs to it, and is closed
under countable union of sets in it.

Note
An algebra F ′ on Ω satisfies (i), (ii), and is closed under finite
union of its members. Every algebra is a σ-algebra, not the other
way around



Some examples of σ-algebras

▶ Given any Ω, F0 = {Ω, ∅} is the smallest σ-algebra on Ω.

▶ Let Ω = {ω : ω = ω1, ω2, ω3 . . . where ωi ∈ {0, 1}}. Thus, Ω
is a collection of infinite sequence of 0’s or 1’s.

▶ Define B1 = {ω ∈ Ω : ω1 = 1}, and B2 = {ω ∈ Ω : ω1 = 0}.

▶ Easy to verify that F1 = {∅,Ω,B1,B2} is a σ-algebra on Ω.

▶ Since Ω ∈ F1. Given any set in F1, its complement is in F1.
Given A1,A2, . . . in F1, we have ∪iAi ∈ F1.



Algebras and σ algebras

▶ Consider again coin toss space ΩB . For each νi either H or T ,

An(ν1, ν2, . . . , νn) = {ω ∈ ΩB : (ω1, ω2, . . . , ωn) = (ν1, ν2, . . . , νn)}

▶ Fn denotes collection of all subsets formed by combining these
subsets in all possible ways. Check that Fn is a σ algebra.

▶ But F = ∪∞
n=1Fn is not!

▶ Is {H,H,H,H . . .} ∈ F?. Consider the set
∩∞
n=1An(H,H, . . . ,H) (here H occcurs n times).



Creating σ-algebras from algebras

▶ Given S a collection of subsets of Ω, denote by σ(S) to be the
smallest σ-algebra that contains S .

▶ Above {H,H,H,H . . .} ∈ σ(F).

▶ Borel sigma algebra B([0, 1]): Smallest sigma algebra that
contains all open intervals in [0, 1]. Equivalently, open sets.

▶ Similarly, define B(ℜ).



B(ℜ)

▶ It contains all closed intervals [a, b] for a ≤ b. Since for all n
large enough it contains ∩n(a− 1/n, b + 1/n). This equals
[a, b].

▶ Hence, it contains the set of any rational numbers and set of
all irrational numbers.

▶ It contains half lines (−∞, x ] for each x . Similarly, [x ,∞) for
each x .



Probability Measure P and probability triplet (Ω,F ,P)

▶ On a measurable space (Ω,F), set function P is referrred to
as a probability measure if

a) P(Ω) = 1

b) ∀A ∈ F , P(A) ≥ 0

c) If A1,A2, · · · ∈ F , Ai ∩ Aj = ∅ ∀i ̸= j , then

P(
⋃
i

Ai ) =
∑
i

P(Ai ).

▶ Big theorem (Cartheodory): A probability measure
defined on an algebra S uniquely extends to the
σ-algebra σ(S).



Law of Large Numbers (SLLN)

▶ Consider (ΩB ,F ,P) where for p ∈ (0, 1), Hn denotes number
of heads amongst (ω1, ω2, . . . , ωn), for all An

P(An) = pHn(1 − p)n−Hn

▶ Weak law of large numbers: P(Hn
n > ϵ) → 0 as n → ∞ for

any ϵ > 0.

▶ Strong Law of Large Numbers:

P

({
ω :

Hn(ω)

n
→ p

})
= 1.



Measures on σ algebras

▶ Home work: Show that if A =
{
ω : Hn(ω)

n → p
}

and

B =
∞⋂

m=1

∞⋃
N=1

∞⋂
n=N

{
ω :

∣∣∣∣Hn(ω)

n
− p

∣∣∣∣ ≤ 1
m

}
,

then A = B.

▶ For Ω = [0, 1] and σ-algebra B([0, 1]), probability measure
that assigns probability b − a to every interval [a, b]
(0 ≤ a ≤ b ≤ 1) corresponds to the Lebesgue measure.

▶ Q: What is the Lebesgue measure assigned to the set of
rationals in [0, 1]?



Random Variables

▶ A random variable X defined on Ω is a map of Ω → R.

▶ Link to (Ω,F ,P): In detail, a r.v. X on (Ω,F ,P) is
X : Ω → R, such that

P(a ≤ X ≤ b) = P({ω : a ≤ X (ω) ≤ b})

is well-defined ∀[a, b].

▶ More generally, X is a measurable function on (Ω,F) so that

{ω : X (ω) ∈ B} ∈ F

for all Borel measurable sets B . That is for all B ∈ B(ℜ).



Random Variables: Example
Let Ω = {HHH,HHT ,HTH,HTT ,THH,THT ,TTH,TTT}.
Consider RV S0,S1,S2 and S3.

S0 = 4

S1 = 8

S1 = 2

S2 = 16

S2 = 4

S2 = 1

S3 = 32

S3 = 8

S3 = 2

(H)

(T)

(H)

(T)

(H)

(T)

(H)

(T)

(H)

(T)
(H)

(T)



Induced Measure and Distribution Function
▶ A random variable X on a probability space (Ω,F ,P) maps

the probability defined on the underlying space Ω to a
probability on the sets of real line.

▶ Probability on a set in Ω, {ω : X (ω) ∈ [a, b]} is assigned to a
set [a, b] on real line through relation

P({ω : X (ω) ∈ [a, b]}) = µX ([a, b]).

µX is the induced probability measure by r.v. X on R.

▶ Define the distribution function of rv X as
FX (x) = µX ((−∞, x ]). This is a non-decreasing function such
that limx→−∞ F (x) = 0 and limx→∞ F (x) = 1.

▶ The definition of measure µX can be extended beyond
intervals in R to the space (R,B(R)).



Expectation of a Random Variable

▶ Expectation: Let’s start with a simple setup where X is a r.v.
assuming discrete values {x1, x2, . . . }. Then

E [X ] =
∑
k

xkP(X = xk)

▶ For continuous random variables X , probabilities are defined
through a non-negative probability density function fX (x) ≥ 0
for all x . Further,

∫∞
−∞ fX (x)dx = 1 and

P(X ∈ A) =
∫
x∈A fX (x)dx .

▶ In that case, E [X ] =
∫
R xfX (x)dx . We need to define

expectations for rv defined on general (Ω,F ,P).



Recall Riemann Integration

Riemann Integration: To compute
∫ b
a g(x)dx for a continuous

function g .

x

y

g(x)

a = x0 b = xn
xi − xi−1

xi−1xi

Let Pn = (x0, x1, . . . , xn) denote the partition of [a, b] into n
segments: x0 = a < x1 < x2 < · · · < xn = b. Let
∥Pn∥ = maxi |xi − xi−1|.



Let L(g) and U(g) be the Lower and Upper Darboux sums:

L(g) =
∑n−1

i=0 infx∈[xi ,xi+1] g(x) · (xi+1 − xi )

U(g) =
∑n−1

i=0 supx∈[xi ,xi+1] g(x) · (xi+1 − xi )

Upper and Lower
Darboux sums

If both L and U exist and their limits as n → ∞ and ∥Pn∥ → 0, are
equal, then g is said to be Riemann integrable, and:∫ b

a
g(x)dx = lim

n→∞,∥Pn∥→0

n−1∑
i=0

inf
x∈[xi ,xi+1]

g(x) · (xi+1 − xi ).



Example of a non-Riemann integrable function

Consider g defined on [0, 1].

g(x) =

{
1 ∀x ∈ [0, 1] ∩Qc

0 otherwise

Since rational numbers are countable, g(x) = 1 almost everywhere.

We have
lim
n→∞

L(g) = 0 ̸= lim
n→∞

U(g) = 1.

Then g is not Riemann integrable. Need to define integration for a
richer class of functions.



Lebesgue Integral: The underlying idea

Another approach to computing definite integrals where instead of
partitioning the x-area, we partition over y = g(x) and then
compute the area.



Lebesgue Integral: Definition

▶ Consider g(x) ≥ 0 for x ∈ [a, b].

▶ Let y0 ≤ minx∈[a,b] g(x) and yn ≥ maxx∈[a,b] g(x).

▶ Consider partition Qn = (y0, y1, . . . , yn).
∥Qn∥ = max1≤i≤n(yi − yi−1).

▶ Let µ denote the Lebsgue measure on ([a, b],B([a, b])),

▶ Lebesgue integral
∫ b
a g(x)dµ is defined by:

lim
∥Qn∥→0

n∑
k=0

ykµ({x : yk ≤ g(x) < yk+1})



▶ When g(x) is 0 on irrationals and 1 on rationals
∫ b
a g(x)dµ

equals b − a.

▶ If g is Riemann integrable, g will be Lebesgue integrable.

▶ On (Ω,F ,P) for a random variable X that takes finitely many
values x1, x2, . . . , xk on a partition of Ω, A1, . . . ,Ak , define
EX =

∫
XdP as ∑

k

xkP(Ak).



Lebesgue Integral for random variables

▶ On (Ω,F ,P) for general non-negative random variable X , EX
is again

∫
XdP and is defined as

▶ Define for n ≥ 1 as:

In =
n·2n∑
k=0

k

2n
P

(
k

2n
≤ X <

k + 1
2n

)
▶ Every term in In will be dominated by the sum of 2 consecutive

terms in In+1.

▶ Then, for some I ∗, In ↑ I ∗ as n ↑ ∞. Set
∫
Ω XdP to equal to

I ∗.



Extending the integral

▶ Any r.v. X = X+ − X− where

X+ = max(X , 0), X− = max(−X , 0).

▶ Then, |X | = X+ + X−.

▶ Further,
∫
|X |dP =

∫
X+dP +

∫
X−dP .

▶ We say X is integrable when
∫
|X |dP < ∞,

▶ and set
∫
XdP =

∫
X+dP −

∫
X−dP .



Some properties follow

▶ If X ≤ Y and both are integrable, then EX ≤ EY .

▶ Linearity ∫
(αX + βY )dP = α

∫
XdP + β

∫
YdP.



Interchanging limits and integrals

▶ Suppose that the sequence of rv Xn → X almost surely.

▶ When do we have EXn → EX? Consider a counterexample

Example

Ω = [0, 1]. P([a, b]) = b − a.

Xn(ω) =

{
n if ω ∈ [0, 1

n )

0 otherwise

▶ For each ω > 0, eventually Xn(ω) = 0 for n large enough.
(except at ω = 0)

▶ Xn → X a.s. where X = 0. But EXn = 1 ∀ n and EX = 0.



Convergence Theorems

▶ Suppose Xn
a.s.−−→ X . Then when does E [Xn] → E [X ]?

▶ Rephrasing: When is limn→∞
∫
XndP =

∫
limn→∞ XndP ,

i.e., when can limit and integral be interchanged?

▶ Monotone Convergence Theorem (MCT)
If Xn’s are non-negative and X1 ≤ X2 ≤ X3 ≤ . . . Then
Xn ↑ X ⇒ E [Xn] ↑ E [X ].

▶ Dominated Convergence Theorem (DCT)
If ∃ rv Y such that |Xn| ≤ Y ∀n ≥ 1 and E [Y ] < ∞. Then
Xn → X ⇒ E [Xn] → E [X ].



Jensen’s Inequality

Let ϕ: convex fn on an interval containing the range of X .

E [ϕ(X )] ≥ ϕ(E [X ])

Visually:

x

y

ϕ(x)

E [X ]

ϕ(E [X ])
(E [X ], ϕ(E [X ]))

Because ϕ is convex, the
tangent to the point
(E [X ], ϕ(E [X ])) will lie
below ϕ(x).



Jensen’s Inequality: Proof

▶ The supporting line for a convex function ϕ at x0 = E [X ] is
given by y = ϕ(E [X ]) +m(X − E [X ]) for m = ϕ′(E [X ]).

▶ By convexity, the function is always above this line:

ϕ(X ) ≥ ϕ(E [X ]) +m(X − E [X ])

▶ Taking expectation on both sides, it follows that

⇒ E [ϕ(X )] ≥ ϕ(E [X ]).



Example of non-measurable sets (Vitali Sets)
▶ Consider a circle of unit circumference, which we can identify

with [0, 1).

x

▶ Define an equivalence relation x ∼ y if x − y ∈ Q. This
partitions the circle into equivalence classes.

▶ Define Ax = {y ∈ [0, 1) : y ∼ x} = {x + q (mod 1) : q ∈ Q}.

▶ Now, let B0 be a set constructed by choosing exactly one
element from each equivalence class (using the Axiom of
Choice).



Example of non-measurable sets (Vitali Sets)

▶ For each rational r ∈ Q ∩ [0, 1), let Br = {b + r
(mod 1) : b ∈ B0}.

▶ It can be seen that the sets Br are disjoint and⋃
r∈Q∩[0,1)

Br = [0, 1)

▶ But P(Br ) can’t be well defined under the standard Lebesgue
measure.

▶ If P(B0) = 0,
∑

r P(Br ) = 0 ̸= 1.

▶ If P(B0) > 0, then
∑

r P(Br ) = ∞ ≠ 1.



Connecting E [h(X )] =
∫
h(X )dP to

∫
h(x)f (x)dx

when X has a pdf f

▶ Let’s start with h(X ) = I({ω : X (ω) ∈ B}) = I(X ∈ B).

▶ RV X has a probability density function f if

P(X ∈ B) =

∫
B
f (x)dx .

▶ Now suppose h(X ) is a simple rv taking finitely many values:

h(X (ω)) =
n∑

k=1

αkI(X ∈ Bk).



▶ ∫
h(X )dP =

∫ n∑
k=1

αkI(X ∈ Bk)dP

▶ so that∫
h(X )dP =

n∑
k=1

αkP(Bk) =
n∑

k=1

αk

∫
Bk

f (x)dx

▶ Therefore,∫
h(X )dP =

∫ ( n∑
k=1

αkI(x ∈ Bk)

)
f (x)dx =

∫
h(x)f (x)dx .



h(X ) a general non-negative random variable

For a general non-negative r.v. h(X ), we can construct a sequence
of simple r.v.’s that approximate it from below.
▶ Let hn(X )(ω) =

∑n2n
k=0

k
2n I{ k

2n ≤h(X )(ω)< k+1
2n }.

▶ It can be seen that hn(X )(ω) ↑ h(X )(ω) for all ω.
▶ From the previous slide, we know E [hn(X )] =

∫
hn(x)f (x)dx .

▶ By the Monotone Convergence Theorem (MCT):

E [h(X )] = lim
n→∞

E [hn(X )] = lim
n→∞

∫
hn(x)f (x)dx

▶ Applying MCT again to the right-hand side integral:

lim
n→∞

∫
hn(x)f (x)dx =

∫
lim
n→∞

hn(x)f (x)dx =

∫
h(x)f (x)dx

▶ Thus, E [h(X )] =
∫
h(x)f (x)dx .



Notions of convergence

Almost sure convergence

Xn
a.s.−−→ X if P({ω : Xn(ω) → X (ω) as n → ∞}) = 1.

Convergence in probability

Xn
p−→ X if ∀ϵ > 0, P(|Xn − X | > ϵ) → 0 as n → ∞.

Pointwise convergence

A sequence of functions {fn} on a domain D converges pointwise
to f if for every x ∈ D, limn→∞ fn(x) = f (x).

Uniform convergence

fn
unif−−→ f if ∀ϵ > 0, ∃N ∈ N s.t. ∀n > N and ∀x ∈ D, we have

|fn(x)− f (x)| < ϵ.



Homework

HW [II]

Show that convergence a.s. ⇒ Convergence in prob. but the
converse is not true.
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