Stochastic Calculus: Lecture on Probability

Fall 2025

Probability - Sample space

- ▶ In probability, the key idea is that of a random experiment.
- ightharpoonup Here, sample space Ω collects all possible outcomes in an experiment.
- **Example:** In experiment of rolling a dice, $\Omega = \{1, 2, 3, 4, 5, 6\}$
- ▶ In experiment of flipping coins infinitely many times Ω_B consists of all $\omega = (\omega_1, \omega_2, ...)$ where each $\omega_i \in \{H, T\}$.

Assigning probability to subsets

- We need an idea of collection of subsets \mathcal{F} of Ω where to each subset probability P can be assigned.
- ightharpoonup Surprisingly, not possible to assign probabilities to each and every subset of Ω unless you limit yourself to countably many outcomes.
- \blacktriangleright A collection of subsets on Ω is an algebra if
- i) $\Omega \in \mathcal{F}$
- ii) If $A \in \mathcal{F}, \Rightarrow A^c \in \mathcal{F} \quad (\forall A \in \mathcal{F})$
- iii) Let $A_1, A_2, \ldots, A_n \in \mathcal{F}$, then $\bigcup_{i=1}^n A_i \in \mathcal{F}$.

Assigning probability to algebras is usually easy

► Consider again coin toss space Ω_B . For each ν_i either H or T, consider subsets of form

$$A_n(\nu_1,\nu_2,\ldots,\nu_n) = \{\omega \in \Omega_B : (\omega_1,\omega_2,\ldots,\omega_n) = (\nu_1,\nu_2,\ldots,\nu_n)\}$$

- ▶ There are 2^n such subsets or atoms, and 2^{2^n} possible subsets formed by their power set (sets formed by all possible combination of these atoms, including the empty set). Call that collection \mathcal{F}_n . Check that \mathcal{F}_n is an algebra.
- And so is $\mathcal{F} = \bigcup_{n=1}^{\infty} \mathcal{F}_n!$
- Easy to assign probability to \mathcal{F} by assigning probability to each set A_n . E.g., for $p \in (0,1)$

$$P(A_n) = p^{\#\nu_i = H} (1-p)^{\#\nu_i = T}.$$

Algebra on [0,1)

Similarly, for $\Omega = [0,1)$ it is easy to assign probabilities to sets of the form

$$A = [a_1, b_1) \cup [a_2, b_2) \dots [a_n, b_n)$$

where $0 \le a_1 < b_1 \le a_2 \dots < b_n \le 1$.

- ▶ Collect all such sets for each n and call that \mathcal{F} .
- $ightharpoonup \mathcal{F}$ is an algebra. Check!
- Easy to assign measure to this algebra. Example, Lebesgue measure measures length $\mu(A) = \sum_{i=1}^{n} (b_i a_i)$.
- ▶ But such algebras contain very few subsets to be interesting

We need σ -algebras!

- A σ -algebra \mathcal{F} defined on Ω has to satisfy the following conditions:
 - i) $\Omega \in \mathcal{F}$
 - ii) If $A \in \mathcal{F}, \Rightarrow A^c \in \mathcal{F} \quad (\forall A \in \mathcal{F})$
 - iii) Let $A_1, A_2, \ldots, A_n, \cdots \in \mathcal{F} \quad \forall i \neq j$, then $\bigcup_i A_i \in \mathcal{F}$.

Thus by construction, a σ -algebra on sample space Ω will contain Ω itself, complements of every set that belongs to it, and is closed under countable union of sets in it.

Note

An algebra \mathcal{F}' on Ω satisfies (i), (ii), and is closed under *finite* union of its members. Every algebra is a σ -algebra, not the other way around

Some examples of σ -algebras

- ▶ Given any Ω, $\mathcal{F}_0 = {Ω, ∅}$ is the smallest σ-algebra on Ω.
- Let $\Omega = \{\omega : \omega = \omega_1, \omega_2, \omega_3 \dots \text{ where } \omega_i \in \{0, 1\}\}$. Thus, Ω is a collection of infinite sequence of 0's or 1's.
- ▶ Define $B_1 = \{\omega \in \Omega : \omega_1 = 1\}$, and $B_2 = \{\omega \in \Omega : \omega_1 = 0\}$.
- ► Easy to verify that $\mathcal{F}_1 = \{\emptyset, \Omega, B_1, B_2\}$ is a σ -algebra on Ω .
- ▶ Since $\Omega \in \mathcal{F}_1$. Given any set in \mathcal{F}_1 , its complement is in \mathcal{F}_1 . Given A_1, A_2, \ldots in \mathcal{F}_1 , we have $\cup_i A_i \in \mathcal{F}_1$.

Algebras and σ algebras

▶ Consider again coin toss space Ω_B . For each ν_i either H or T,

$$A_n(\nu_1,\nu_2,\ldots,\nu_n) = \{\omega \in \Omega_B : (\omega_1,\omega_2,\ldots,\omega_n) = (\nu_1,\nu_2,\ldots,\nu_n)\}$$

- \triangleright \mathcal{F}_n denotes collection of all subsets formed by combining these subsets in all possible ways. Check that \mathcal{F}_n is a σ algebra.
- ▶ But $\mathcal{F} = \bigcup_{n=1}^{\infty} \mathcal{F}_n$ is not!
- ▶ Is $\{H, H, H, H, ...\} \in \mathcal{F}$?. Consider the set $\bigcap_{n=1}^{\infty} A_n(H, H, ..., H)$ (here H occcurs n times).

Creating σ -algebras from algebras

- ▶ Given S a collection of subsets of Ω , denote by $\sigma(S)$ to be the smallest σ -algebra that contains S.
- ▶ Above $\{H, H, H, H, ...\} \in \sigma(\mathcal{F})$.
- ▶ Borel sigma algebra $\mathcal{B}([0,1])$: Smallest sigma algebra that contains all open intervals in [0,1]. Equivalently, open sets.
- ▶ Similarly, define $\mathcal{B}(\Re)$.

$\mathcal{B}(\Re)$

- ▶ It contains all closed intervals [a, b] for $a \le b$. Since for all n large enough it contains $\bigcap_n (a 1/n, b + 1/n)$. This equals [a, b].
- Hence, it contains the set of any rational numbers and set of all irrational numbers.
- ▶ It contains half lines $(-\infty, x]$ for each x. Similarly, $[x, \infty)$ for each x.

Probability Measure P and probability triplet (Ω, \mathcal{F}, P)

• On a measurable space (Ω, \mathcal{F}) , set function P is referrred to as a probability measure if

a)
$$P(\Omega) = 1$$

- b) $\forall A \in \mathcal{F}, P(A) \geq 0$
- c) If $A_1, A_2, \dots \in \mathcal{F}$, $A_i \cap A_j = \emptyset \ \forall i \neq j$, then

$$P(\bigcup_i A_i) = \sum_i P(A_i).$$

▶ Big theorem (Cartheodory): A probability measure defined on an algebra S uniquely extends to the σ -algebra $\sigma(S)$.

Law of Large Numbers (SLLN)

► Consider $(\Omega_B, \mathcal{F}, P)$ where for $p \in (0,1)$, H_n denotes number of heads amongst $(\omega_1, \omega_2, \dots, \omega_n)$, for all A_n

$$P(A_n) = p^{H_n}(1-p)^{n-H_n}$$

- ▶ Weak law of large numbers: $P(\frac{H_n}{n} > \epsilon) \to 0$ as $n \to \infty$ for any $\epsilon > 0$.
- Strong Law of Large Numbers:

$$P\left(\left\{\omega: \frac{H_n(\omega)}{n} \to p\right\}\right) = 1.$$

Measures on σ algebras

▶ Home work: Show that if $A = \left\{\omega : \frac{H_n(\omega)}{n} \to p\right\}$ and

$$B = \bigcap_{m=1}^{\infty} \bigcup_{N=1}^{\infty} \bigcap_{n=N}^{\infty} \left\{ \omega : \left| \frac{H_n(\omega)}{n} - p \right| \le \frac{1}{m} \right\},\,$$

then A = B.

- For $\Omega = [0,1]$ and σ -algebra $\mathcal{B}([0,1])$, probability measure that assigns probability b-a to every interval [a,b] $(0 \le a \le b \le 1)$ corresponds to the Lebesgue measure.
- ➤ Q: What is the Lebesgue measure assigned to the set of rationals in [0,1]?

Random Variables

- ▶ A random variable X defined on Ω is a map of Ω → ℝ.
- ▶ Link to (Ω, \mathcal{F}, P) : In detail, a r.v. X on (Ω, \mathcal{F}, P) is $X : \Omega \to \mathbb{R}$, such that

$$P(a \le X \le b) = P(\{\omega : a \le X(\omega) \le b\})$$

is well-defined $\forall [a, b]$.

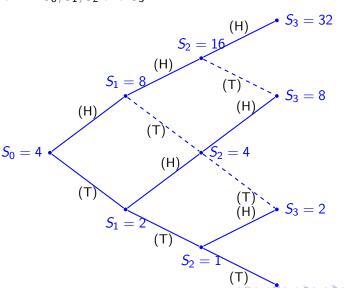
▶ More generally, X is a measurable function on (Ω, \mathcal{F}) so that

$$\{\omega: X(\omega) \in B\} \in \mathcal{F}$$

for all Borel measurable sets B. That is for all $B \in \mathcal{B}(\Re)$.

Random Variables: Example

Let $\Omega = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}$. Consider RV S_0, S_1, S_2 and S_3 .



Induced Measure and Distribution Function

- A random variable X on a probability space (Ω, \mathcal{F}, P) maps the probability defined on the underlying space Ω to a probability on the sets of real line.
- ▶ Probability on a set in Ω , $\{\omega : X(\omega) \in [a, b]\}$ is assigned to a set [a, b] on real line through relation

$$P(\{\omega: X(\omega) \in [a,b]\}) = \mu_X([a,b]).$$

 μ_X is the induced probability measure by r.v. X on \mathbb{R} .

- ▶ Define the distribution function of rv X as $F_X(x) = \mu_X((-\infty, x])$. This is a non-decreasing function such that $\lim_{x \to -\infty} F(x) = 0$ and $\lim_{x \to \infty} F(x) = 1$.
- ▶ The definition of measure μ_X can be extended beyond intervals in $\mathbb R$ to the space $(\mathbb R, \mathcal B(\mathbb R))$.

Expectation of a Random Variable

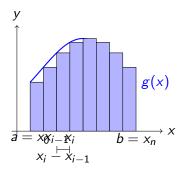
Expectation: Let's start with a simple setup where X is a r.v. assuming discrete values $\{x_1, x_2, \dots\}$. Then

$$E[X] = \sum_{k} x_k P(X = x_k)$$

- For continuous random variables X, probabilities are defined through a non-negative probability density function $f_X(x) \ge 0$ for all x. Further, $\int_{-\infty}^{\infty} f_X(x) dx = 1$ and $P(X \in A) = \int_{x \in A} f_X(x) dx$.
- ▶ In that case, $E[X] = \int_{\mathbb{R}} x f_X(x) dx$. We need to define expectations for rv defined on general (Ω, \mathcal{F}, P) .

Recall Riemann Integration

Riemann Integration: To compute $\int_a^b g(x)dx$ for a continuous function g.



Let $P_n = (x_0, x_1, \dots, x_n)$ denote the partition of [a, b] into n segments: $x_0 = a < x_1 < x_2 < \dots < x_n = b$. Let $||P_n|| = \max_i |x_i - x_{i-1}|$.

Let L(g) and U(g) be the Lower and Upper Darboux sums:

$$L(g) = \sum_{i=0}^{n-1} \inf_{x \in [x_i, x_{i+1}]} g(x) \cdot (x_{i+1} - x_i)$$
 Upper and Lower
$$U(g) = \sum_{i=0}^{n-1} \sup_{x \in [x_i, x_{i+1}]} g(x) \cdot (x_{i+1} - x_i)$$
 Darboux sums

If both L and U exist and their limits as $n \to \infty$ and $||P_n|| \to 0$, are equal, then g is said to be Riemann integrable, and:

$$\int_{a}^{b} g(x)dx = \lim_{n \to \infty, ||P_{n}|| \to 0} \sum_{i=0}^{n-1} \inf_{x \in [x_{i}, x_{i+1}]} g(x) \cdot (x_{i+1} - x_{i}).$$

Example of a non-Riemann integrable function

Consider g defined on [0,1].

$$g(x) = \begin{cases} 1 & \forall x \in [0,1] \cap \mathbb{Q}^c \\ 0 & \text{otherwise} \end{cases}$$

Since rational numbers are countable, g(x) = 1 almost everywhere.

We have

$$\lim_{n\to\infty} L(g) = 0 \neq \lim_{n\to\infty} U(g) = 1.$$

Then g is not Riemann integrable. Need to define integration for a richer class of functions.

Lebesgue Integral: The underlying idea

Another approach to computing definite integrals where instead of partitioning the x-area, we partition over y=g(x) and then compute the area.

Lebesgue Integral: Definition

- ► Consider $g(x) \ge 0$ for $x \in [a, b]$.
- ▶ Let $y_0 \le \min_{x \in [a,b]} g(x)$ and $y_n \ge \max_{x \in [a,b]} g(x)$.
- Consider partition $Q_n = (y_0, y_1, \dots, y_n)$. $||Q_n|| = \max_{1 \le i \le n} (y_i - y_{i-1})$.
- ▶ Let μ denote the Lebsgue measure on $([a, b], \mathcal{B}([a, b]))$,
- ► Lebesgue integral $\int_a^b g(x)d\mu$ is defined by:

$$\lim_{\|Q_n\| \to 0} \sum_{k=0}^n y_k \mu(\{x : y_k \le g(x) < y_{k+1}\})$$

- ▶ When g(x) is 0 on irrationals and 1 on rationals $\int_a^b g(x) d\mu$ equals b-a.
- \triangleright If g is Riemann integrable, g will be Lebesgue integrable.
- ▶ On (Ω, \mathcal{F}, P) for a random variable X that takes finitely many values x_1, x_2, \ldots, x_k on a partition of Ω, A_1, \ldots, A_k , define $EX = \int XdP$ as

$$\sum_{k} x_k P(A_k).$$

Lebesgue Integral for random variables

- ▶ On (Ω, \mathcal{F}, P) for general non-negative random variable X, EX is again $\int XdP$ and is defined as
- ▶ Define for $n \ge 1$ as:

$$I_n = \sum_{k=0}^{n \cdot 2^n} \frac{k}{2^n} P\left(\frac{k}{2^n} \le X < \frac{k+1}{2^n}\right)$$

- ▶ Every term in I_n will be dominated by the sum of 2 consecutive terms in I_{n+1} .
- ► Then, for some I^* , $I_n \uparrow I^*$ as $n \uparrow \infty$. Set $\int_{\Omega} XdP$ to equal to I^* .

Extending the integral

▶ Any r.v. $X = X^+ - X^-$ where

$$X^+ = \max(X, 0), \quad X^- = \max(-X, 0).$$

- ▶ Then, $|X| = X^+ + X^-$.
- ► Further, $\int |X|dP = \int X^+ dP + \int X^- dP$.
- ▶ We say X is integrable when $\int |X| dP < \infty$,
- ▶ and set $\int XdP = \int X^+dP \int X^-dP$.

Some properties follow

- ▶ If $X \le Y$ and both are integrable, then $EX \le EY$.
- Linearity

$$\int (\alpha X + \beta Y)dP = \alpha \int XdP + \beta \int YdP.$$

Interchanging limits and integrals

- ▶ Suppose that the sequence of rv $X_n \to X$ almost surely.
- ▶ When do we have $EX_n \rightarrow EX$? Consider a counterexample

Example

$$\Omega = [0,1]. \ P([a,b]) = b - a.$$

$$X_n(\omega) = \begin{cases} n & \text{if } \omega \in [0, \frac{1}{n}) \\ 0 & \text{otherwise} \end{cases}$$

- For each $\omega > 0$, eventually $X_n(\omega) = 0$ for n large enough. (except at $\omega = 0$)
- $ightharpoonup X_n o X$ a.s. where X=0. But $EX_n=1 \ \forall \ n$ and EX=0.

Convergence Theorems

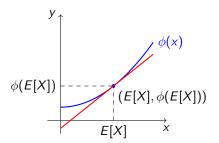
- ▶ Suppose $X_n \xrightarrow{a.s.} X$. Then when does $E[X_n] \to E[X]$?
- ▶ Rephrasing: When is $\lim_{n\to\infty} \int X_n dP = \int \lim_{n\to\infty} X_n dP$, i.e., when can limit and integral be interchanged?
- ▶ Monotone Convergence Theorem (MCT) If X_n 's are non-negative and $X_1 \le X_2 \le X_3 \le \dots$ Then $X_n \uparrow X \Rightarrow E[X_n] \uparrow E[X]$.
- ▶ Dominated Convergence Theorem (DCT) If \exists rv Y such that $|X_n| \leq Y \ \forall n \geq 1$ and $E[Y] < \infty$. Then $X_n \to X \Rightarrow E[X_n] \to E[X]$.

Jensen's Inequality

Let ϕ : convex fn on an interval containing the range of X.

$$E[\phi(X)] \ge \phi(E[X])$$

Visually:



Because ϕ is convex, the tangent to the point $(E[X], \phi(E[X]))$ will lie below $\phi(x)$.

Jensen's Inequality: Proof

- ► The supporting line for a convex function ϕ at $x_0 = E[X]$ is given by $y = \phi(E[X]) + m(X E[X])$ for $m = \phi'(E[X])$.
- By convexity, the function is always above this line:

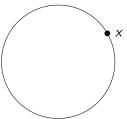
$$\phi(X) \ge \phi(E[X]) + m(X - E[X])$$

► Taking expectation on both sides, it follows that

$$\Rightarrow E[\phi(X)] \ge \phi(E[X]).$$

Example of non-measurable sets (Vitali Sets)

► Consider a circle of unit circumference, which we can identify with [0,1).



- ▶ Define an equivalence relation $x \sim y$ if $x y \in \mathbb{Q}$. This partitions the circle into equivalence classes.
- ▶ Define $A_x = \{y \in [0,1) : y \sim x\} = \{x + q \pmod{1} : q \in \mathbb{Q}\}.$
- Now, let B_0 be a set constructed by choosing exactly one element from each equivalence class (using the Axiom of Choice).

Example of non-measurable sets (Vitali Sets)

- For each rational $r \in \mathbb{Q} \cap [0,1)$, let $B_r = \{b+r \pmod{1} : b \in B_0\}$.
- ▶ It can be seen that the sets B_r are disjoint and

$$\bigcup_{r\in\mathbb{Q}\cap[0,1)}B_r=[0,1)$$

- ▶ But $P(B_r)$ can't be well defined under the standard Lebesgue measure.
 - ▶ If $P(B_0) = 0, \sum_r P(B_r) = 0 \neq 1$.
 - ▶ If $P(B_0) > 0$, then $\sum_r P(B_r) = \infty \neq 1$.

Connecting $E[h(X)] = \int h(X)dP$ to $\int h(x)f(x)dx$ when X has a pdf f

- ▶ Let's start with $h(X) = \mathbb{I}(\{\omega : X(\omega) \in B\}) = \mathbb{I}(X \in B)$.
- ▶ RV X has a probability density function f if

$$P(X \in B) = \int_B f(x) dx.$$

Now suppose h(X) is a simple rv taking finitely many values:

$$h(X(\omega)) = \sum_{k=1}^{n} \alpha_k \mathbb{I}(X \in B_k).$$

$$\int h(X)dP = \int \sum_{k=1}^{n} \alpha_k \mathbb{I}(X \in B_k)dP$$

so that

$$\int h(X)dP = \sum_{k=1}^{n} \alpha_k P(B_k) = \sum_{k=1}^{n} \alpha_k \int_{B_k} f(x)dx$$

Therefore,

$$\int h(X)dP = \int \left(\sum_{k=1}^n \alpha_k \mathbb{I}(x \in B_k)\right) f(x)dx = \int h(x)f(x)dx.$$

h(X) a general non-negative random variable

For a general non-negative r.v. h(X), we can construct a sequence of simple r.v.'s that approximate it from below.

- ► Let $h_n(X)(\omega) = \sum_{k=0}^{n2^n} \frac{k}{2^n} \mathbb{I}_{\left\{\frac{k}{2^n} \le h(X)(\omega) < \frac{k+1}{2^n}\right\}}$.
- ▶ It can be seen that $h_n(X)(\omega) \uparrow h(X)(\omega)$ for all ω .
- ▶ From the previous slide, we know $E[h_n(X)] = \int h_n(x)f(x)dx$.
- ▶ By the Monotone Convergence Theorem (MCT):

$$E[h(X)] = \lim_{n \to \infty} E[h_n(X)] = \lim_{n \to \infty} \int h_n(x)f(x)dx$$

▶ Applying MCT again to the right-hand side integral:

$$\lim_{n\to\infty}\int h_n(x)f(x)dx=\int\lim_{n\to\infty}h_n(x)f(x)dx=\int h(x)f(x)dx$$

▶ Thus, $E[h(X)] = \int h(x)f(x)dx$.

Notions of convergence

Almost sure convergence

$$X_n \xrightarrow{a.s.} X$$
 if $P(\{\omega : X_n(\omega) \to X(\omega) \text{ as } n \to \infty\}) = 1$.

Convergence in probability

$$X_n \xrightarrow{p} X$$
 if $\forall \epsilon > 0$, $P(|X_n - X| > \epsilon) \to 0$ as $n \to \infty$.

Pointwise convergence

A sequence of functions $\{f_n\}$ on a domain D converges pointwise to f if for every $x \in D$, $\lim_{n\to\infty} f_n(x) = f(x)$.

Uniform convergence

 $f_n \xrightarrow{unif} f$ if $\forall \epsilon > 0$, $\exists N \in \mathbb{N}$ s.t. $\forall n > N$ and $\forall x \in D$, we have $|f_n(x) - f(x)| < \epsilon$.

Homework

HW [II]

Show that convergence a.s. \Rightarrow Convergence in prob. but the converse is not true.